
Detecting BitTorrent Blocking

Marcel Dischinger Alan Mislove à Andreas Haeberlen à Krishna P. Gummadi

 MPI-SWS àRice University

ABSTRACT
Recently, it has been reported that certain access ISPs are surrep-
titiously blocking their customers from uploading data using the
popular BitTorrent Þle-sharing protocol. The reports havesparked
an intense and wide-ranging policy debate on network neutrality
and ISP trafÞc management practices. However, to date, end users
lack access to measurement tools that can detect whether their ac-
cess ISPs are blocking their BitTorrent trafÞc. And since ISPs do
not voluntarily disclose their trafÞc management policies, no one
knows how widely BitTorrent trafÞc blocking is deployed in the
current Internet. In this paper, we address this problem by design-
ing an easy-to-use tool to detect BitTorrent blocking and bypre-
senting results from a widely used public deployment of the tool.

Categories and Subject Descriptors: C.2.3 [Computer-
Communication Networks]: Network Operations; C.2.5
[Computer-Communication Networks]: Local and Wide-Area
Networks; C.4 [Performance of Systems]
General Terms: Measurement, Performance, Experimentation
Keywords: BitTorrent, blocking, network measurement

1. INTRODUCTION
Access ISPs like residential cable and DSL providers are increas-
ingly deploying middleboxes, such as trafÞc shapers, blockers, and
Þrewalls, to monitor and manage their customersÕ trafÞc. These
middleboxes classify and manipulate ßows belonging to different
applications according to ISP-speciÞed policies [1, 2]. AstrafÞc
management policies are often driven by business interests(e.g.,
peering or transit agreements), many ISPs do not publicly disclose
the details of their middlebox deployments. Thus, end userstoday
may not know about the presence of the middleboxes, and oftendo
not understand the impact of ISP trafÞc management policieson
the performance of their applications.

Recently, it has been reported that certain access ISPs [3, 4] are
surreptitiously blocking their customers from uploading data us-
ing the popular BitTorrent Þle-sharing protocol. The ISPs were
found to tear down TCP connections identiÞed as BitTorrent ßows

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for proÞt or commercial advantage and that copies
bear this notice and the full citation on the Þrst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speciÞc
permission and/or a fee.
IMCÕ08,October 20Ð22, 2008, Vouliagmeni, Greece.
Copyright 2008 ACM 978-1-60558-334-1/08/10 ...$5.00.

by sending forged TCP reset (RST) packets to the end hosts. These
reports of blocking sparked an intense and wide-ranging policy de-
bate between ISPs, consumer advocacy groups, web site operators,
and government agencies on acceptable ISP trafÞc management
practices and network neutrality [5]. However, to date, endusers
lack access to measurement tools that can detect whether their ac-
cess ISPs are blocking BitTorrent trafÞc. As a result, no oneknows
how widely BitTorrent is blocked in the current Internet.

In this paper, we present a large-scale measurement study ofBit-
Torrent trafÞc blocking by ISPs. To conduct the study, we designed
a tool called BTTest, which enables end users to test for blocking
on their own access links. BTTest runs as a Java applet withinthe
userÕs web browser; it emulates a BitTorrent ßow to a server un-
der our control, and it checks whether this connection is aborted
with TCP reset packets that neither endpoint has sent. BTTest is
easy to use, which enables us to gather data about a large number
of ISP links. The test achievesreproducible resultsbecause it runs
in a controlled environment, and its analysis isconservativein the
sense that it checks for a very speciÞc blocking technique, namely
interrupting ßows with forged connection reset packets.

We deployed BTTest on publicly accessible test servers and in-
vited end users around the world to test their links. Over a period
of 18 weeks, more than 47,300 end users in 1,987 ISPs world-wide
ran BTTest. We examined the traces gathered during these tests for
evidence of BitTorrent blocking. Our Þndings show that BitTorrent
uploads are being blocked for a signiÞcant number of hosts, mostly
from ISPs located in the USA and in Singapore. While our cur-
rent study is limited to detecting BitTorrent blocking, it represents
a Þrst step towards the broader goal of making ISP policies more
transparent to end users.

The rest of the paper is organized as follows. Section 2 provides
an overview of the efforts by ISPs to shape BitTorrent trafÞcand
discusses existing work related to detecting such behavior. Sec-
tion 3 describes the design of our BTTest tool and the methodology
used to gather traces at scale. In Section 4, we explain how BTTest
analyzes the traces to detect BitTorrent blocking, and Section 5
presents the Þndings of our measurement study. We conclude in
Section 6 with a discussion of open challenges and potentialfuture
work.

2. BACKGROUND AND RELATED WORK
BitTorrent [6] is a popular peer-to-peer Þle-sharing protocol, that
accounts for a large and rapidly growing fraction of the databytes
sent over the Internet [7]. The resulting increase in Internet trafÞc
is raising the cost of transit for ISPs, many of which are selling ßat-
rate plans with unlimited Internet access to their customers. Thus,
it is not surprising that an ISP would implement strategies to reduce
the amount of BitTorrent trafÞc generated by its customers.

Java applet

BTTest serverUser

1 Web request

2

3 BitTorrent flows

User BTTest server

4 Trace data

5 Results page

User BTTest server

Figure 1: Overview of the BTTest system:(1) The user initiates the test. (2) The server sends her a Java applet. (3) The applet connects
to the server and emulates a sequence of BitTorrent ßows. (4)The applet informs the server whether any ßows have been aborted. (5) The
server analyzes the information from both endpoints and displays a result page.

Many ISPs are known to rate-limit the bandwidth consumed by
BitTorrent trafÞc by deploying trafÞc shapers in their networks [2].
However, it has been discovered recently that some ISPs do not just
rate-limit BitTorrent ßows but block them outright [5] by injecting
forged RST packets into the ßows. When the end nodes of a BitTor-
rent transfer receive the RST packets, they immediately terminate
the transfer.

The aggressive blocking of BitTorrent trafÞc by ISPs has been
widely criticized, and it has generated signiÞcant interest in detect-
ing BitTorrent trafÞc manipulation. While several systemshave
already been built to detect in-network BitTorrent blocking, they
either require expert knowledge and specialized tools (which limits
scalability), or they are based on high-level heuristics (which lim-
its reliability). An example of the Þrst category is the Electronic
Frontier FoundationÕs ÔTest Your ISPÕ project [4], which offers in-
structions for tracing a BitTorrent transfer and checking for forged
packets. This method requires access to two hosts in different ISPs
and involves the use of tools like Wireshark, which is beyondthe
capabilities of most end users. An example of the second category
is the network monitor plugin for the popular Azureus BitTorrent
client [8], which reports the number of aborted connections. Since
the plugin does not correlate observations from both endpoints of
an aborted ßow, it cannot reliably determine whether the RSTpack-
ets were forged or sent by the other peer.

To our knowledge, BTTest is the Þrst tool to offer highly spe-
ciÞc, reliable blocking detection to a large number of end users.

3. MEASUREMENT METHODOLOGY
In this section, we Þrst present the design of BTTest and thenwe
describe how BTTest gathers traces of BitTorrent ßows.

3.1 Design goals
The goal of BTTest is to detect whether a userÕs BitTorrent trafÞc
is being blocked. More speciÞcally, we wanted to enable the user
to answer the following three questions:

1. Is an ISP blocking BitTorrent ßows with forged RST pack-
ets?

2. How is an ISP identifying BitTorrent ßows? Is the identiÞ-
cation based on port numbers, BitTorrent protocol messages,
or both?

3. Does the blocking affect BitTorrent uploads, downloads,or
both?

Note that we focus exclusively on BitTorrent blocking, and only
on one speciÞc technique, namely blocking with forged RST pack-
ets. We donot consider other forms of trafÞc manipulation, such
as rate-limiting, message-dropping, or altering of the content. De-
tecting such a broad range of trafÞc manipulation practicesis the
subject of future work.

We wanted to deploy BTTest on a public web server and gather
traces from end users around the world. Hence, another important

handshake

Leecher Seeder

handshake

bi t f i el d

bi t f i el d

i nt er est ed

unchoke

r equest

pi ece

Figure 2: BitTorrent packet exchange in BTTest: The interac-
tion always follows the same Þxed script.

design goal for BTTest is that it should be very easy to use. Ideally,
it should be as easy to use as the test sites for measuring Internet
connection speeds [9].

3.2 BTTest overview
To detect whether BitTorrent ßows are blocked, BTTest emulates
a series of BitTorrent ßows between the userÕs host and a central
BTTest server. During each ßow, BTTest collects a packet trace,
and it closely monitors both endpoints for any error conditions that
might cause the ßow to be aborted. If the ßow is aborted without
an apparent cause, BTTest checks the packet trace for additional
control packets that were not sent by either of the endpoints. If such
packets are found, BTTest reports this as evidence of blocking.

BTTest requires no special expertise and can be run from any
machine that has a web browser with Java support. This ensures
that it is available to a wide range of users. Figure 1 shows an
overview of our prototype system. When a user visits the BTTest
website and requests a measurement of her access link, a Javaap-
plet is downloaded to her web browser which connects1 to our cen-
tral BTTest server. This server is located in a network that is known
not to block BitTorrent ßows, so we can be sure that if any block-
ing is observed, it is performed on a link near the userÕs host. The
applet then emulates a sequence of BitTorrent ßows and reports the
results back to the server. Finally, the browser displays a results
page, which reports whether any blocking was observed.

3.3 Emulating BitTorrent ßows
BTTest emulates BitTorrent ßows between end hosts and test
servers, using the standard BitTorrent protocol [6]. The interaction
always follows the same Þxed script, which is shown in Figure2.
1To avoid problems with NAT and Þrewalls, the connection is al-
ways initiated by the user-side applet.

The ßow can be either a downstream ßow (in which data is trans-
ferred from the server to the userÕs host) or an upstream ßow.In
the following, we will refer to the sending endpoint as theseeder,
which claims to already have all pieces of a Þle, and to the other
endpoint as theleecher, which claims to have no pieces so far.

The leecher begins by exchanging ahandshake message with
the seeder. This is followed by an exchange ofbitfield mes-
sages, which indicate the data segments that are available lo-
cally. Here, the seeder reports that it has all the segments,while
the leecher reports that it has none. Next, the leecher sendsan
interested message to indicate that it wants to download seg-
ments, and the seeder grants it access by sending anunchoke
message. During the remainder of the ßow, the leecher downloads
as many segments as it can; it repeatedly sends arequest mes-
sage to ask for a random segment, and the server returns apiece
message that contains the segment. Since the content does not mat-
ter for our experiment, we Þll each segment with random bytes.

3.4 BitTorrent test suite
To determine how ISPs identify BitTorrent trafÞc, BTTest actually
runs multiple ßows with different parameters. SpeciÞcally, it varies
the following:

• TCP port: Half of the ßows use port 6881, a well-known
BitTorrent port. The others use port 4711, which is not asso-
ciated with a speciÞc protocol.

• Direction: Half of the ßows transfer content downstream
(from the server to the userÕs host), while the others trans-
fer content upstream (from the userÕs host to the server).

• Protocol: Half of the ßows contain real BitTorrent messages.
The others contain messages of the same size and in the same
order, but Þlled with random bytes.

BTTest runs each of the eight possible combinations twice, for
a total of 16 test ßows. Each BitTorrent ßow lasts for ten2 sec-
onds, unless it is aborted earlier. Thus, the total number ofbytes
transferred depends on the available bandwidth on the path between
the userÕs host and the server. By observing which of the tested
ßows are aborted, BTTest can infer how BitTorrent trafÞc is identi-
Þed, i.e., which features actually trigger the blocking. The four test
ßows with random data over a non-BitTorrent port serve as a Òsan-
ity checkÓ; they show whether the BTTest applet can communicate
with our test servers at all.

3.5 Trace collection
For each emulated ßow, BTTest collects two pieces of information:
(1) On the server side a complete link-level packet trace (analogous
to tcpdump), and (2) on the user side any Java exceptions the
applet observed during the ßow, including the point in the transfer
where the connection was closed. We refer to these two items as a
result, and to the set of all 16 results for a single host as aresult set.

Ideally, BTTest would gather a packet trace on the userÕs host
as well. However, there is no easy way to take such a trace from
a Java applet running in a web browser, and in any case, admin-
istrator privileges (and thus a considerable amount of trust) would
be required on most operating systems. Therefore, we had to Þnd
another way to determine whether the host had seen a connection
reset from the server. Unfortunately, a connection reset manifests
itself in Java as a genericIOException ; the real cause is men-
tioned only in the string representation, which can vary between
2The ßows are longer than strictly necessary because we also mea-
sure throughput. However, this data is not used in the present paper.

JVMs and between different languages. Our current prototype rec-
ognizes the most common strings directly and logs any other strings
for further analysis.

4. TRACE ANALYSIS
We now describe the analysis BTTest performs on the gathered
data, and we explain the types of blocking it can detect.

4.1 Sanitizing traces
As described in Section 3.4, BTTest tries to run a sequence of16
ßows between the userÕs host and the server. However, some hosts
abort the test early or experience problems when running theapplet.
Therefore, BTTest only considers a result set when the following
two conditions hold:

• All 16 ßows were tested and produced a result.Result sets
which do not contain results for all 16 tests are not considered
in the results below. This can be caused by the user closing
her web browser or browsing to another site, or by a crash of
the applet.

• All 4 TCP Òsanity checkÓ ßows were able to send some
data. Result sets where at least one of the sanity check ßows
had no data packet ACKed (in the case of a download) or
received (in the case of an upload) are discarded. This indi-
cates the applet was unable to contact our web server, which
could be caused by misconÞgured NATs, Þrewalls, or Java
applet security policies.

If either of these conditions are not met, BTTest reports an error
to the user.

4.2 Identifying blocked ßows
BTTestÕs goal is to detect whether middleboxes in the network are
inserting forged RST packets to tear down BitTorrent ßows. To de-
tect these inserted packets, BTTest analyzes the server trace along
with any Java exceptions seen by the user-side applet for each ßow.
A ßow is considered to have been torn down by a forged RST
packet only whenall of the following three conditions hold:

• An IOException with a speciÞc set of messages was seen
by our applet. This indicates that an error was observed
with the TCP connection on the user side. BTTest looks
for the messages ÒConnection reset by peerÓ or ÒAn exist-
ing connection was forcibly closed by the remote hostÓ in
the IOException, which indicate that the host has received a
RST packet.

• The serverÕs packet trace contains at least one incoming
RST packet. This RST packet causes the connection to be
torn down at the server.

• The serverÕs packet trace contains no outgoing RST
packets before a FIN or RST packet was received.Once
the server receives a FIN or RST packet, the connection is
torn down. Thus, any subsequent data packets received on
the connection will be naturally responded to with RSTs.

The presence of all three conditions strongly indicates that a
forged RST caused the ßow to be torn down. The Þrst two con-
ditions indicate that a RST was received at both the server and the
userÕs host. While we cannot say for sure that the userÕs hostre-
ceived a RST packet (as we do not have a packet-level trace from
the host), we only look for IOExceptions with messages that are
caused by the receipt of a RST packet. The third condition indi-
cates that the server did not initiate the connection tear-down (in

other words, it received either a FIN or a RST before it sent any
RSTs). Thus, BTTest detects forged RSTs by looking for ßows (1)
which were torn down by a RST received at the userÕs host and/or
server and (2) which contain no RSTs sent by the userÕs host orthe
server before the connection was torn down.

4.3 Detecting BitTorrent blocking
We now describe how BTTest uses the information about blocked
ßows to detect BitTorrent blocking, and to infer how BitTorrent
ßows are identiÞed by the middlebox. Our working hypothesisis
that the identiÞcation could be based on three ßow characteristics:
the TCP port number of the ßow, the BitTorrent messages in the
ßow, and the direction of the ßow.

Recall that for each test, BTTest runs two identical ßows, soit
obtains two results. BTTest considers a test to have been affected
by forged RSTs if either of the two ßow results indicates forged
RSTs. For simplicity, we call the test to havefailed in this case;
otherwise, we say that the test hassucceeded.

BTTest then looks for BitTorrent blocking behavior by examin-
ing the result sets for each direction separately. If all tests in one
direction using the BitTorrent ports fail regardless of whether Bit-
Torrent data or random data was sent, BTTest reportsBitTorrent
blocking based on BitTorrent portsin that direction. If all the tests
in one direction using the BitTorrent messages fail, regardless of
the port on which the test runs, BTTest reportsBitTorrent blocking
based on BitTorrent messagesin that direction.

4.4 Limitations
In its current form, BTTest can only detect a single form of trafÞc
manipulation. It considers only BitTorrent trafÞc, and only block-
ing by injected control packets. BTTest currently does not look
for trafÞc throttling, packet dropping, or packet manipulation. Ex-
tending BTTest to test for such additional behavior is the subject of
future work.

Also, BTTest cannot determine at which point along the path the
forged RST packets are generated. A typical Internet path between
a host and our measurement servers is likely to cross multiple ISPs.
BTTest cannot determine which ISP is responsible for tearing down
BitTorrent connections. Developing techniques which use network
tomography to pinpoint the location of the forged RST packets is
the subject of ongoing work.

Finally, BTTestÕs centralized architecture makes it possible for
ISPs to avoid detection by whitelisting the BTTest servers.This is
unlikely to have affected the data we present in this paper, but it
may become a problem once BTTest is more widely known. We
are currently working on a decentralized version of BTTest,which
would make whitelisting by ISPs much more difÞcult.

5. RESULTS
In this section, we describe how we collected a set of traces from
our public BTTest server, and we present results from our analysis
of these traces.

5.1 Data set
We deployed BTTest on a publicly accessible web server at
http://broadband.mpi-sws.org/transparency/bttest.php. Initially,
we invited a handful of our colleagues and friends to test their ISPs,
and we asked them to spread the invitation to their friends. After
the Þrst week, the site caught the attention of a few inßuential blog-
gers, and hundreds of new users tested their ISPs each day.

From March 18th to July 25th, 2008, our BTTest servers col-
lected a total of 47,318 result sets from end users connectedto
1,987 ISPs world-wide. 146 result sets did not contain results for

all 16 ßows, and a further 17 failed to send data during at least one
of the sanity-check ßows. In these cases, BTTest reported anerror
to the user, so we removed these sets.

Some users ran our test multiple times. To avoid biasing our
results, for each IP address, we considered only the Þrst result set
that passes the two conditions above, and we ignored all other result
sets for that IP address. After removing the duplicate tests, we were
left with 41,109 result sets.

We found evidence of BitTorrent blocking in 3,353 (8.2%) of the
41,109 result sets. In the rest of this section, we take a closer look
at the hosts that observed blocking.

5.2 Where are the blocked hosts located?
First, we examined the countries in which hosts observed BitTor-
rent blocking. In total, our test was run from users in 135 coun-
tries. Most of our users came from North America (44.3%), Europe
(26.7%), and South America (17.9%).

Table 1 lists all countries where we found BitTorrent blocking
for at least one host. Our results indicate widespread BitTorrent
blocking only for the USA and for Singapore. Interestingly,even
within these countries, we observed blocking only for hostsbelong-
ing to a few ISPs.

Next, we looked at the ISPs whose hosts were affected by Bit-
Torrent blocking. Overall, we found that hosts of 47 ISPs experi-
enced blocking; the ISPs are listed in Table 1, along with thenum-
ber of hosts we tested from each ISP and the number of hosts whose
BitTorrent ßows were blocked. The results show that not all hosts
of these ISPs are affected by blocking.

We do not have enough data to determine why only some (but
not all) hosts of an ISP are subjected to blocking, but there are
several possible explanations. For example, the middleboxes that
block BitTorrent transfers might not be deployed on all of anISPÕs
network paths, or blocking might depend on the current load of
the network. Also, some ISPs might allow BitTorrent trafÞc up to a
certain threshold and apply the blocking to the Òheavy hittersÓ only.

5.3 How do ISPs identify BitTorrent ßows?
Next, we wanted to understand what ßow properties ISPs were us-
ing to detect and block BitTorrent ßows. We examined each of the
three ßow characteristics BTTest varies in the test suite, and we de-
termined how many of the 3,353 result sets contained evidence of
blocking based on these characteristics.

• TCP port: We found that only 530 (15.8%) of the result
sets showed evidence of blocking based on BitTorrent ports,
regardless of whether or not the ßows actually contained Bit-
Torrent messages. Thus, blocking of TCP connections based
only on well-known BitTorrent ports seems to exist, but does
not appear to be widespread.

• Direction: We found that 3,335 (99.5%) of the result sets
contained evidence of blocking in the upstream direction, but
only 71 (2.1%) of them contained evidence of blocking in
the downstream direction. Thus, ISPs seem to be blocking
primarily BitTorrent uploads and are rarely interfering with
BitTorrent downloads.

• Protocol: Finally, we found that 3,293 (98.2%) of the re-
sult sets contained evidence of blocking based on BitTorrent
messages. Thus, ISPs appear to be using deep packet inspec-
tion to block BitTorrent ßows regardless of the port they are
using.

In summary, the BitTorrent blocking we observed seems to be
focused primarily on BitTorrent uploads, and it appears to affect

Country ISP # measured # blocked
hosts hosts

Australia AARNet 2 1
Belgium MAC Telecom 5 1
Brasil Brasil Telecom 54 1

PaeTec Comm. 9 1
Canada RISQ 7 1

Westman Comm. 4 3
China China Telecom 49 2
Finland Joensuun Elli 1 1
Germany Uni Gšttingen 1 1
Greece OTEnet 122 8
Hungary DataNet 17 1
India SonicWall 1 1
Ireland IBIS 9 1
Jamaica Terrenap 1 1
Kuwait Wataniya Telecom 5 4
Malaysia Telekom Malaysia 336 12

Maxis Comm. 9 2
New Zealand TelstraClear 22 1
Saudi Arabia SaudiNet 8 1
Singapore StarHub 156 101
South Korea Korea Telecom 12 5
Spain Telefonica 602 1
Taiwan TANet 214 2

Cheng Kung Univ. 11 2
APOL 10 1

UK Tiscali 354 2

USA

Comcast 4397 2574
Cox 1004 508
RoadRunner 2086 50
Cablevision 646 1
Suddenlink 123 4
Mediacom Comm. 120 17
Clearwire 34 9
Midcontinent Comm. 21 13
General Comm. 13 5
Pavlov Media 11 2
PaeTec Comm. 9 1
PrairieWave 4 2
UC Riverside 4 1
Journey Comm. 3 1
NHCTC 2 1
Bergen.org 1 1
DHL Systems Inc. 1 1
Moric.org 1 1
PSC 1 1
The Shaw Group 1 1
WSIPC 1 1

Table 1: The number of hosts with BitTorrent blocking
grouped by country and ISP.

ßows using the BitTorrent protocol regardless of whether ornot
they are using a well-known BitTorrent port.

5.3.1 Case study: Comcast
Our analysis found that most ISPs identify BitTorrent ßows based
on protocol messages. Presumably, the ISPs are using deep packet
inspection to monitor the protocol messages exchanged and to de-
cide whether a ßow should be blocked. To understand the precise
protocol messages that trigger blocking, we ran a controlled ex-
periment using a Comcast host in Seattle, WA, to which we had
access. In this experiment, we emulated BitTorrent transfers just as
BTTest does, but we varied more aspects of the ßows; for exam-
ple, we obfuscated BitTorrent protocol messages by ßippingbits,
we left out some of the messages, and we changed the number of
advertised pieces in thebitfield message to emulate different
sharing scenarios, e.g., both peers having some but not all pieces of
the Þle.

We found that, on this particular access link, BitTorrent uploads
were blocked if and only if all of the following conditions hold:

• The server sent a valid BitTorrenthandshake message,

• The Comcast host sent a validbitfield message, and

• The Comcast hostÕsbitfield message indicated that it
had all pieces.

In other words, the uploads of a Þle were blocked only when the
Comcast host has Þnished downloading the Þle and was upload-
ing it altruistically. However, the uploads were not blocked when
the Comcast host was still missing some of the pieces of the Þle
and thus, appeared to be interested in downloading. From this ex-
periment, we conclude that the middleboxes which tear down Bit-
Torrent connections maintain some per-ßow state and inspect the
packet payload for speciÞc protocol messages.

Note that this case study only applies to Comcast. Unfortunately,
we did not have access to hosts connected to other ISPs and were
therefore unable run the same controlled experiment for them.

5.4 When do ISPs block BitTorrent ßows?
ISPs that have admitted to blocking BitTorrent ßows claim that they
do so only during the hours of peak load, when their networks are
congested. The data we collected with BTTest enables us to check
whether blocking occurs continuously throughout the day oris lim-
ited to just a few hours of the day. For each hour of the day, we
calculated the percentage of result sets that contained evidence of
blocking. For each result set, we inferred the location of the tester
and then computed the local time3 when the test had been per-
formed. We then grouped together measurements from the same
hour. Here we present data for Comcast and Cox because these are
the two ISPs for which we had the most data points.

Figure 3 shows our results. While the number of measurements
per hour shows a diurnal pattern with more measurements in the
evening than in the early morning, the fraction of blocked tests
shows no clear trend. We observed blocking for a signiÞcant frac-
tion of the tests throughout the day. Figure 4 groups the result sets
by day of the week instead. Again, there is no clear trend; we
observed a signiÞcant fraction of blocked hosts on all days of the
week. Finally, we used a Comcast host under our control in Seat-
tle, WA, to run BTTest at 30-minute intervals for an entire week.
We found that BitTorrent ßows were constantly blocked during the
entire week.

In conclusion, our data suggests that BitTorrent ßows are being
blocked independent of the time of the day or the day of the week.

5.5 At what stage are ßows blocked?
Finally, we took a closer look at the BTTest packet traces to see at
which stage of the BitTorrent protocol the blocking occurred. The
RST packets can be injected at different points in a transfer, that is,
at different stages of the BitTorrent protocol shown in Figure 2. To
perform this analysis, we used the data reported by our user-side
applet about the last message it sent before the connection was torn
down.

In total, we identiÞed four different places in the protocolat
which connections were blocked. We found a very strong corre-
lation in behavior across ISPs, and we observed mostly consistent
behavior for hosts of the same ISP. Due to lack of space, we only
give examples for each categories.

• After the handshake message: For Telekom Malaysia
and Brasil Telecom we observed that the connection with

3We used an IP-to-geolocation tool to infer the timezone of each
tester.

 0

 100

 200

 300

 400

0 4 8 12 16 20

N
um

be
r

of
 te

st
s

Hour of the day (local time)

 0
 20
 40
 60
 80

 100

0 4 8 12 16 20

%
 o

f b
lo

ck
ed

 te
st

s

Hour of the day (local time)

(a) Comcast (USA)

 0

 20

 40

 60

 80

0 4 8 12 16 20

N
um

be
r

of
 te

st
s

Hour of the day (local time)

 0
 20
 40
 60
 80

 100

0 4 8 12 16 20

%
 o

f b
lo

ck
ed

 te
st

s

Hour of the day (local time)

(b) Cox (USA)

Figure 3: Result sets grouped by the hour of the day for Comcast and Cox: BitTorrent ßows were blocked at all times of the day.

 0

 200

 400

 600

 800

Sun Tue Thu Sat

N
um

be
r

of
 te

st
s

Day of the week (local time)

 0
 20
 40
 60
 80

 100

Sun Tue Thu Sat

%
 o

f b
lo

ck
ed

 te
st

s

Day of the week (local time)

(a) Comcast (USA)

 0

 40

 80

 120

 160

Sun Tue Thu Sat

N
um

be
r

of
 te

st
s

Day of the week (local time)

 0
 20
 40
 60
 80

 100

Sun Tue Thu Sat

%
 o

f b
lo

ck
ed

 te
st

s

Day of the week (local time)

(b) Cox (USA)

Figure 4: Result sets grouped by the day of the week for Comcast and Cox: Blocking occurred on every day of the week.

BitTorrent messages was torn down immediately after the
handshake message was sent by the leecher.

• After the bitfield message: For StarHub, RoadRun-
ner OTEnet, and most other ISPs we observed connection
tear-down for connections with BitTorrent messages after the
leecher sent thebitfield message.

• After the interested message:For most Comcast and
Cox hosts, we observed that the connections with BitTorrent
messages were torn down after theinterested message
was sent by the leecher.

• Later in the transfer: Finally, for Comcast, Cox and Media-
com, we observed that connections with random data on Bit-
Torrent ports were occasionally torn down later in the trans-
fer. However, we were unable to determine a common pat-
tern for the exact point where the connection was torn down.

While the types of blocking can sometimes vary even between
hosts of the same ISP, we found that the basic characteristics of
blocking were mostly consistent across hosts and even across some
of the ISPs. Because of this, we suspect that many ISPs are us-
ing similar equipment for trafÞc identiÞcation and reset injection,
e.g., the specialized hardware sold by Sandvine [1]. However, it
is possible that these boxes are conÞgured differently in different
locations or at different times of the day.

6. CONCLUSION AND FUTURE WORK
Recently published reports of access ISPs blocking BitTorrent
transfers by injecting forged RST packets have sparked an inter-
national debate on network neutrality. In this context, thepresent
paper makes two contributions. First, we presented the design of
BTTest, a reliable and easy-to-use tool that allows end users to de-
tect if BitTorrent trafÞc is being blocked on their access link. Sec-
ond, we presented results from a large-scale measurement study
that is based on a widely-used public BTTest deployment.

Our current study is limited to detecting BitTorrent blocking,
and there are a number of open challenges and interesting direc-
tions for future work. First, it would be interesting to develop
analysis techniques for detecting other types of trafÞc manipula-
tion beyond blocking, e.g., BitTorrent trafÞc shaping. Second, the

centralized architecture of our BTTest tool limits scalability and
is vulnerable to whitelisting by ISPs wishing to avoid detection. It
would be useful to investigate ways to decentralize BTTest to allow
the emulated BitTorrent transfers to be sent between testing peers.
Finally, while our current methodology allows us to detect BitTor-
rent blocking along an Internet path, we cannot diagnose where
along the path the trafÞc is being blocked, i.e., which ISP isre-
sponsible for blocking BitTorrent. A user could potentially localize
the source of blocking by repeatedly running the test from servers
located at different vantage points in the Internet. By correlating
the blocking data obtained from multiple transfers along different
Internet paths, one could hope to deduce which links are subject to
BitTorrent blocking.

7. REFERENCES
[1] ÒSandvine Inc.Óhttp://www.sandvine.com/ .
[2] ÒPacketeer Inc.Óhttp://www.packeteer.com/ .
[3] ÒDslReports: Comcast is using Sandvine to manage P2P connections.Ó

http://www.dslreports.com/forum/r18323368-Com
cast-is-using-Sandvine-to-manage-P2P-Connections .

[4] ÒEFF ÔTest Your ISPÕ Project.Ó
http://www.eff.org/testyourisp .

[5] ÒComments of Comcast Corporation before the FCC.Ó
http://fjallfoss.fcc.gov/prod/ecfs/retrieve.
cgi?native_or_pdf=pdf&id_document=6519840991 .

[6] ÒThe BitTorrent Protocol SpeciÞcation, Version 11031.Ó
http://bittorrent.org/beps/bep_0003.html .

[7] A. Parker, ÒThe true picture of peer-to-peer Þle sharing.Ó
http://www.cachelogic.com/research/ .

[8] ÒVuze Network Status Monitor.Ó
http://azureus.sourceforge.net/plugin_details.
php?plugin=aznetmon .

[9] ÒThe Global Broadband Speed Test.Ó
http://www.speedtest.net/ .

