
Glasnost: Enabling End Users to Detect Traffic Differentiation

Marcel Dischinger
MPI-SWS

Massimiliano Marcon
MPI-SWS

Saikat Guha
MPI-SWS, Microsoft Research

Krishna P. Gummadi
MPI-SWS

Ratul Mahajan
Microsoft Research

Stefan Saroiu
Microsoft Research

Abstract

Holding residential ISPs to their contractual or legal
obligations of “unlimited service” or “network neutral-
ity” is hard because their trafficmanagement policies are
opaque to end users and governmental regulatory agen-
cies. We have built and deployed Glasnost, a system
that improves network transparency by enabling ordi-
nary Internet users to detect whether their ISPs are dif-
ferentiating between flows of specific applications. We
identify three key challenges in designing such a sys-
tem: (a) to attract many users, the system must have
low barrier of use and generate results in a timely man-
ner, (b) the results must be robust to measurement noise
and avoid false accusations of differentiation, which can
adversely affect ISPs’ reputation and business, (c) the
system must include mechanisms to keep it up-to-date
with the continuously changing differentiation policies
of ISPs worldwide. We describe howGlasnost addresses
each of these challenges. Glasnost has been operational
for over a year. More than 350,000 users from over
5,800 ISPs worldwide have used Glasnost to detect dif-
ferentiation, validating many of our design choices. We
show how data from individual Glasnost users can be
aggregated to provide regulators and monitors with use-
ful information on ISP-wide deployment of various dif-
ferentiation policies.

1 Introduction

A confluence of technical, business, and political in-
terests has made “network neutrality” a hot button is-
sue [18, 19]. The debate revolves around whether and to
what extent Internet service providers (ISPs), who own
and operate data networks, should be allowed to differ-
entiate one class of traffic from another. Many ISPs want
to restrict bandwidth-hungry applications that can hurt
other applications in the network. Some also want to
control applications such as VoIP that reduce ISPs’ abil-
ity to profit from competing services of their own. In
contrast, many content providers are against traffic dif-

ferentiation because it gives the ISPs arbitrary control
over the quality of service experienced by users. In par-
allel, regulatory bodies and politicians are trying to de-
vise policies that balance competing concerns [20, 21].

As this debate rages, ordinary Internet users are often
in the dark, even though they are directly affected. The
information sources available to users today are media
reports, blogs, and statements made by ISPs; such in-
formation sources are imprecise at best and incorrect at
worst. As a result, much traffic differentiation occurs
without their knowledge. However, when ISPs traffic
management practices come to light, user outrage forces
regulatory bodies to conduct public hearings on preva-
lent practices [20, 21].

This situation led us to build and deploy a system,
called Glasnost, that enables users to detect if they are
subject to traffic differentiation. We make no judgment
about whether traffic differentiation should be permit-
ted by regulatory policy. Rather, our motivation is to
make any differentiation along their paths transparent
to users.

While other recent research efforts also aim to detect
traffic differentiation [27, 31], Glasnost is unique in its
focus on users. Instead of providing only a broad char-
acterization of differentiation in the Internet, our goal is
to let individual users determine if they experience dif-
ferentiation and quantify its impact at the time they use
our system.

Our focus is on enabling individuals who are not
technically savvy. This creates design constraints that
are typically not present in other measurement systems.
First, the bar to using the system must be low. For
instance, it is undesirable to require the installation of
special software on client machines, especially if such
software needs privileged access. This constraint hin-
ders our ability to collect high-fidelity data (e.g., packet
traces) or to finely control packet transmissions. We
must limit ourselves to coarse-grained data obtained
through unprivileged client operations. Second, the re-
sults for an individual user must be accurate and simple
to interpret. For example, we cannot return results that

rely on inferences derived from data aggregated across
users. While such results are accurate on aggregate, they
could be incorrect when applied to an individual user.
Third, the system must evolve with ISP practices. Oth-
erwise, Glasnost would gradually become unable to de-
tect the presence of differentiation and users would stop
trusting the system.

We based our Glasnost design on these constraints.
The result is a system that is effective and easy to use.
A user can detect differentiation by simply pointing her
browser to a Web page. The browser downloads and
runs a Java applet which exchanges traffic with our mea-
surement server. The client-server nature of our archi-
tecture helps to avoid many of the operational issues
with network measurements, such as traversing NATs
and firewalls, or raising alarms in network intrusion de-
tection systems. The traffic exchange is designed to ac-
curately and quickly detect any differentiation. We also
build a simple flow emulation tool that simplifies the in-
corporation of tests to detect new differentiation tech-
niques that emerge in the Internet.

The diversity of ISP practices makes it challenging
to detect traffic differentiation reliably. For instance, an
ISP might employ differentiation only at specific times
(e.g., in the evenings), or only under high loads, or only
for flows that send too much traffic. These factors led
us to design an on-demand system. Each time a user
uses Glasnost, she performs an individual test that de-
tects the presence of traffic differentiation for her Inter-
net connection at the time of the test. This provides a
more reliable answer to this user than extrapolating the
results from other testing times or other users.

Glasnost has been operational since March 2008, en-
abling users to detect BitTorrent differentiation. Be-
tween March 2008 and September 2009, more than
350,000 users from over 5,800 ISPs worldwide have
used the system. Several individuals and corporations
volunteered to host Glasnost measurement servers on
their own infrastructure in order to allow operations on
an even larger scale. We believe that our design princi-
ples have directly contributed to the success of Glasnost.

In addition to the design and evaluation of Glasnost,
we also present a detailed analysis of BitTorrent differ-
entiation in the Internet. We find that about 10% of our
users experience differentiation of BitTorrent traffic. We
also study ISPs’ BitTorrent differentiation policies in de-
tail over a period of two months (from January to Febru-
ary 2009) using data from the Glasnost tests. We find,
for instance, that it is more common for ISPs to differ-
entiate against file uploads than downloads and to differ-
entiate throughout the day rather than only during peak
hours.

2 Traffic Differentiation

Traffic differentiation refers to an ISP treating the pack-
ets of one flow differently than those of another flow.
Based on information published by ISPs, researchers,
and equipment vendors [5, 10, 22], we characterize traf-
fic differentiation along three dimensions.

1. Traffic differentiation based on flow types. To dif-
ferentiate between flows of different types, i.e., belong-
ing to different applications, ISPs must distinguish the
packets of one flow from those of other flows. This can
be done by examining one of the following:

(a) The IP header. The source or destination addresses
can determine how an ISP treats a flow. For ex-
ample, universities routinely rate-limit only traffic
that’s going to or coming from their student dorms.

(b) The transport protocol header. ISPs can use port
numbers or other transport protocol identifiers to
determine a flow’s treatment. For example, P2P
traffic is sometimes identified based on its port
numbers.

(c) The packet payload. ISPs can use deep-packet in-
spection (DPI) to identify the application generat-
ing a packet. For example, ISPs look for P2P pro-
tocol messages in packet payload to rate-limit the
traffic of P2P applications, such as BitTorrent.

2. Traffic differentiation independent of flow type. In
addition to features of a flow itself, an ISP may use other
criteria to determine whether to differentiate. Some of
these include:

(a) Time of day. An ISP may differentiate only during
peak hours.

(b) Network load. An ISP may differentiate on a link
only when the network load on that link is high.

(c) User behavior. An ISP may differentiate only
against users with heavy bandwidth usage.

3. Traffic manipulation mechanisms. There are a
number of ways in which an ISP can treat one class of
packets differently.

(a) Blocking. One form of differentiation is to termi-
nate a flow, either by blocking its packets or by
injecting a connection termination message (e.g.,
sending a TCP FIN or TCP RST packet).

(b) Deprioritizing. Routers can use multiple priority
queues when forwarding packets. ISPs can use this
mechanism to assign differentiated flows to lower
priority queues and to limit the throughput of cer-
tain classes.

(c) Packet dropping. Packets of a flow can be dropped
either using a fixed or variable drop rate.

(d) Modifying TCP advertised window size. ISPs can
lower the advertised window size of a TCP flow,
prompting a sender to slow down.

(e) Application-level mechanisms. ISPs can control an
application’s behavior by modifying its protocol
messages. For example, transparent proxies [28]
can redirect HTTP or P2P flows to alternate con-
tent servers.

What kinds of traffic differentiation does Glasnost
detect?
Our current implementation of Glasnost detects traf-
fic differentiation that is triggered by transport protocol
headers (e.g., ports) or packet payload. These triggers
are more common than IP headers [1, 5].
We designed Glasnost to be an on-demand system.

Each time a user uses Glasnost, we detect traffic differ-
entiation between flows of the user at the time of the
test. While Glasnost has not been designed detect traf-
fic shaping that affects all flows of a user, e.g., based
on time of day or network load or user behavior, it is
possible to infer such shaping policies by aggregating
and comparing the results of Glasnost tests conducted at
different times of the day by different users on different
networks.
Instead of inferring differentiation based on a particu-

lar manipulation mechanism, Glasnost detects the pres-
ence of differentiation based on its impact on application
performance.

3 Design Principles

In the process of developing Glasnost we identified sev-
eral key design principles. Although in Glasnost our
focus is traffic differentiation, the design principles we
identified are more general and apply to many mea-
surement systems that want to attract a large number of
users. In this section, we discuss these principles in de-
tail and argue why they are generally useful when de-
signing measurement systems for Internet users at large.
Our goal was to build a system that lets ordinary In-

ternet users determine if they are affected by traffic dif-
ferentiation. Because of its focus on end users and the
nature of its measurements, Glasnost must satisfy cer-
tain design requirements that are typically not present
in other measurement systems. We distill these require-
ments into three design principles. These principles dic-
tate that the system must be easy to use so that it can
serve any Internet user, its inferencesmust be robust and
simple to interpret, and it must be extensible to allow de-
tection of new network policies as they evolve.

We explain these principles in detail below and also
describe the consequences they have on the design of
Glasnost. These consequences motivate certain design
choices and rule out many others.

Principle #1: Low barrier of use

Attracting a large number of users to a measurement
system requires having a low barrier of use. Although
this challenge appears obvious, solving it is the key to
success. As we discuss later, it complicated the design
of other aspects of the system. But at each step we re-
sisted the temptation to compromise in the interest of
other desirables such as efficiency and higher-fidelity
data.

Design consequences. There are four design conse-
quences of this principle. First, because most users are
not technically savvy, the interface must be simple and
intuitive. Second, we cannot require users to install new
software or perform administrative tasks. Many network
measurement techniques require installing drivers (e.g.,
the WinPcap library for Windows) or running privileged
code (e.g., raw sockets) on users’ machines. Such code
can provide detailed, low-level data (e.g., packet traces)
that simplifies the measurement task. But in our experi-
ence, users are often unwilling to use systems with such
requirements. For example, one of our earlier attempts
required users to run code with administrator privileges
on their machines and to leave a port open in their fire-
walls and NATs. These obstacles greatly limited adop-
tion; we attracted fewer than fifty users. Third, because
many users have little patience, the system must com-
plete its measurements quickly. Fourth, to incentivize
users to use the system in the first place, the system
should display per-user results immediately after com-
pleting the measurements.

In order to satisfy above the requirements, our current
client-side implementation uses a small-size Java applet
(21 KBytes) that users download off our webpage. The
applet exchanges traffic with our servers, which we then
analyze to detect differentiation (we explain the nature
of this traffic below). The test runs for about 6 minutes.
Immediately after the test is finished Glasnost whether
the user is affected by traffic differentiation.

Our quick and simple test methodology is inspired
by non-research-orientedweb sites for broadband speed
tests [2] and represents a departure from other research
systems. For instance, Scriptroute [25] requires users
to write their own measurement scripts, and thus its use
has been limited to researchers and other experts.

Principle #2: Measurement accountability

Because the system is designed for ordinary users, it is
essential that the measurements are accurate and that the
results cannot be misinterpreted. For instance, consider
the results of an experiment to infer path capacities in

the Internet. Since the measurements can be affected by
transient noise, researchers will know that the answer
computed along an individual path cannot be trusted but
the answers can be aggregated to provide an accurate
estimate of path capacity. But an ordinary user that is
interested in the capacity of her own path might not be
in a position to make that distinction.

When detecting traffic differentiation, accurate inter-
pretation of results is critical due to the controversial na-
ture of traffic management in the Internet: there is still
a heated debate whether it is legal for an ISP to em-
ploy traffic management. In addition, if people were
to falsely interpret results as their ISP performing traf-
fic differentiation when in fact it is not, the system
would quickly lose credibility. In fact, in the past there
have been instances when some widely publicized stud-
ies have mistakenly accused ISPs of using policies they
never deployed [26, 29].

Design consequences. Maintaining measurement ac-
countability has three design consequences. First, the
test to detect differentiation should, to the extent pos-
sible, marginalize any factors that add uncertainty. The
performance of an Internet flow can be affected by many
confounding factors. This includes the operating sys-
tem, especially its networking stack and its configu-
ration. Additionally, directly using application client
software is problematic as it does not give full control
over the measurement traffic. Short-term throughput of
such “natural” flows can differ because of differences in
packet sizes and burstiness. Finally, we have to consider
transient noise, as, e.g., caused by background traffic.

With passive measurement tools, it is often not easy
to isolate these factors. These tools must take into ac-
count for a large number of confounding factors in their
inference. The complexity of this analysis can lead to
inaccurate results. In contrast, active measurements can
be designed to avoid most confounding factors. Having
full control over the traffic that is sent to measure per-
formance simplifies the analysis. Further, active mea-
surements allow to run all measurements between the
same pair of hosts, removing factors like OS and net-
working stack. The only remaining confounding factor
is transient noise, which can be dealt with using sim-
ple techniques such as repeating measurements multiple
times.

Second, because not all uncertainty can be removed
from the inference, the result presented to the user must
be conservative, with a near-zero false positive rate.
In the context of traffic differentiation, a false positive
means that the system falsely claims that the user is ex-
periencing traffic differentiation. Minimizing false pos-
itives is challenging because it results in an increase in
the false negative rate. This trade-off is inherent.

Because of the concerns above, our testing primitive
is based on comparing the throughput of a pair of flows.
One flow in the pair belongs to the potential victim ap-
plication. The second is a reference flow that belongs
to a different application. The flows are identical except
for the trigger that we want to test for differentiation,
such as port number or payload. The flows are gener-
ated back-to-back and multiple pairs are run to reduce
and calibrate the effect of noise.

Third, we must be prepared to provide the data and
the evidence behind our inferences when requested. We
retain the data of all measurements in which Glasnost
detects traffic differentiation. We treat this data as evi-
dence. If we are challenged to justify our findings, the
stored data will help us explain on what basis Glasnost
declared that an ISP is using traffic differentiation.

Principle #3: Easy to evolve

To remain relevant, a system that wants to detect traf-
fic differentiation must be able to evolve as ISPs evolve
their traffic management policies. For example, in Fall
2008, Comcast blocked BitTorrent uploads for some of
its customers [10]. Several months later, they started
replacing this practice with less severe forms of differ-
entiation [7]. In fact, our recent measurements indicate
that BitTorrent traffic blocking is rare today unlike in
2008. A system with a fixed set of capabilities will have
a limited shelf life in such an evolving environment.

Design consequences. This principle mandates in-
corporation of mechanisms that help the system evolve
with the network. Network evolution may be inciden-
tal or adversarial. In an incidental evolution, ISPs might
target new applications in the future or use new traffic
manipulation mechanisms. A detection system should
be extensible, to add tests that detect traffic differentia-
tion against popular new applications or based on new
shaping techniques. Glasnost enables advanced users to
submit packet-level traces of applications that they sus-
pect are being targeted by their ISPs. User suspicion is
powerful; it was how many of the currently known ISP
differentiation behaviors came to light. We do not ex-
pect all users to be able to submit traces but there are
many enthusiastic users that are capable of collecting
(with our help if needed) and sharing traces. Glasnost
then makes it easy to use these network traces to con-
struct new detection tests. These tests help us keep pace
with new traffic differentiation techniques and applica-
tions that may be targeted.

Adversarialy, ISPs could begin whitelisting traffic
from measurement servers in an attempt to evade detec-
tion. A successful system must be aware of this problem
and find ways to minimize whitelisting. Our solution
was to make our server code publicly available. Any-
one can setup Glasnost on a well-provisioned server and

Web server Measurement servers

Client

1

2

3

4

Figure 1: The Glasnost system. (1) The client contacts
the Glasnost webpage. (2) The webpage returns the ad-
dress of a measurement server. (3) The client connects
to the measurement server and loads a Java applet. The
applet then starts to emulate a sequence of flows. (4)
After the test is done, the collected data is analyzed and
a results page is displayed to the client.

other users can start measuring to new servers. Mak-
ing our code publicly available allowed other Glasnost
servers to appear on the Internet, which makes it hard
for ISPs to evade detection. However, this method
is not foolproof; a determined ISP may choose to stay
up-to-date with the list of Glasnost servers. We doubt
that many ISPs would be willing to invest significant
effort in evading detection. As much as an ISP would
like to conceal its traffic management practices from
the public, denying those practices or making blatant at-
tempts to hide them is risky. Such behavior, if detected,
would attract intense scrutiny from telecom regulators
and would severely damage the ISP’s reputation. For
example, when Comcast’s BitTorrent blocking practices
were revealed to the public [1], Comcast was fined by
the FCC and was subjected to highly critical media cov-
erage.

4 Design of Glasnost

We now present the design of Glasnost based on the re-
quirements outlined above.

4.1 System architecture

Glasnost is based on a client-server architecture. Clients
connect to a Glasnost server to download and run var-
ious tests. Each test measures the path between the
client and the server by generating flows that carry
application-level data. This data is carefully constructed
to detect traffic differentiation along the path.

Figure 1 presents a high-level description of how
clients measure their Internet paths. A client first con-
tacts a central webpage that redirects to a Glasnost mea-

Figure 2: The Glasnost web interface.

surement server. This dynamic redirection enables load
balancing across measurement servers and makes it easy
to incorporate new servers by adding them to the redi-
rection list.

After the client is redirected, the measurement server
presents a simple interface to the user. As shown in Fig-
ure 2, the user selects the application traffic she would
like to test and starts the test by just clicking the “Start
testing” button. The client’s browser downloads a Java
applet that starts exchanging packets with the server. We
elaborate on the Glasnost measurement tests next.

4.2 Measurement tests

The key primitive behind the Glasnost measurement
tests is the emulation of a pair of flows that are iden-
tical except in one respect that we suspect triggers dif-
ferentiation along the path. Comparing the performance
of these flows helps to determine if differentiation is in-
deed present.

Figure 3 shows two flows designed to detect whether
differentiation based on BitTorrent protocol content is
present along a path. The exchange on the left corre-
sponds to the first flow. The client opens a TCP con-
nection to the measurement server and starts exchang-
ing packets that implement the BitTorrent protocol: the
packet payloads carry BitTorrent protocol headers and
content. The exchange on the right corresponds to the
second flow. The client opens another TCP connection
and performs the same packet exchange, but the packets
contain random bytes instead of BitTorrent headers or
data. An ISP that differentiates against BitTorrent based
on protocol messages would impact only the first flow.
Thus, significant differences in the flows’ performance
is likely to be caused by the differences in their pay-
loads and lets us detect whether differentiation is present
along the path. Transient noise can also lead to differ-
ences in flows’ performance; we describe in the next
section how we handle noise.

Handshake [68B]

Client Server

Handshake [
68B]

Bitfield [166B]

Bitfield [166B]

Interested [5B]

Unchoke [5B]

Request [17B]

Piece [256K
B]

(a) BitTorrent flow

Random [68B]

Client Server

Random [68B
]

Random [166B]

Random [166
B]

Random [5B]

Random [5B]

Random [17B]

Random [256
KB]

(b) Reference flow

Figure 3: A pair of flows used in Glasnost tests. The
two flows are identical in all aspects other than their
packet payloads, which allows us to detect differentia-
tion that targets flows based on their packet contents.

During the test, the measurement server records a
packet-level trace of all emulated flows and the client
applet records ancillary information including excep-
tions caused by network errors. Once the transfers end,
the client uploads the recorded information to the server.
The server analyzes this information together with the
traces collected on the server-side and shows the find-
ings to the client.

Glasnost’s emulation methodology leads to measure-
ment robustness. As Figure 3 shows, application-level
data is the only difference between the two emulated
flows. The two flows traverse the same network path and
have the same network-level characteristics, such as port
numbers, packet sizes, etc. In contrast, passive measure-
ment, a different technique, may have many factors dif-
fer across these measured flows. Correctly accounting
for all such differences is challenging.

Another benefit of active measurement is the ability
to carefully control the measurement test. For example,
we can repeat flows with different payloads or port num-
bers. This ability allows Glasnost to precisely identify
the specific factors that trigger differentiation.

In the next section, we describe our measurement test
in more detail and how we make it robust to transient
noise. We describe how we make the system easy to
evolve using a trace replay based tool for constructing
measurement tests in Section 6.

5 Robust Detection of Differentiation

As described earlier, Glasnost emulates a pair of flows
and determines the presence of traffic differentiation by
comparing their performance. When comparing the per-
formance of a pair of flows, we must ensure that their

difference is indeed due to the differences in their con-
tent and not due to some changes in the test environ-
ment. Our measurement tests are constructed in a way
that eliminates all major confounding factors except one
– transient noise due to interference from cross-traffic
(background traffic) along the measurement path. In this
section, we discuss techniques to robustly detect traffic
differentiation in the face of transient noise.

The primary challenge in this task stems from the
fact that the noise can vary at small time-scales. Thus,
two flows can be affected differently even if run back-
to-back. As one egregious example, we found that the
throughput of two back-to-back flows differed by a fac-
tor of three even though the flows were identical. A sim-
plistic detection method will mistakenly detect differen-
tiation in this case. It might appear that the differential
impact of noise could be reduced by running the flows
simultaneously. But we find that setup to be even worse
because of self-interference among the two flows.

Our basic strategy for robust detection is to run each
flow type multiple times. We use the variance in the
performance of the flows of the same type to identify
paths that are too noisy to enable reliable detection. For
the remaining paths, we can then detect differentiation
by comparing the flows of different types. We first de-
scribe howwe apply this strategy when tests are run long
enough that we do not have to worry about having too
little data. As we found that many users are too impa-
tient to run long tests, we adapted our strategy to tests
that run for a shorter duration.
We describe our method using throughput as the mea-

sure of flow performance1, since it is of prime interest to
many applications and is the target of many ISPs looking
to reduce their network load. Because of TCP dynam-
ics, throughput is directly affected by any differentiation
that impacts flow latency or loss.

5.1 Filtering tests affected by noise

To detect the level of transient noise, we repeat the runs
of the two flow types multiple times back-to-back. Un-
like active ISP differentiation, transient noise does not
discriminate based on flow content; it would not affect
multiple runs of the same flow type and thus can be de-
tected by comparing their performance.
To understand transient noise patterns and the extent

to which they affect flow throughput, we configured our
Glasnost deployment to run a BitTorrent flow and a ref-
erence flow with random bytes, five times each. The
runs of the two flow types were interspersed and each
flow lasted for 60 seconds to allow sufficient time for
TCP to achieve stable throughput. Over a period of one

1Our method can be extended to other measures of performance such
as jitter.

 0

 200

 400

 600

 800

 1000

low noise occasional
high noise

variable
high noise

consistent
high noise

T
h
ro

u
g
h
p
u
t
(K

b
p
s)

Figure 4: The four classes of noise we observed in
our analysis. The graph shows the minimum, median,
andmaximum throughputs observed in example tests af-
fected by each class of noise.

month, we collected measurements of 3,705 residential
broadband hosts, 2,871 in the upstream and 834 in the
downstream direction.
We compared the throughput obtained by the five runs

of each flow type with each other. Our analysis of the
maximum, median, and minimum throughput reveals
the four distinct patterns shown in Figure 4, correspond-
ing to four different cross-traffic levels:

1. Consistently low cross-traffic: all throughput
measurements belonging to the same flow type fall
within a narrow range (i.e., min is close to max).

2. Mostly low but occasionally high cross-traffic: a
majority of throughput measurements are clustered
around the maximum but a few points are farther
away (i.e., max and min are far apart but median is
close to max).

3. Highly variable cross-traffic: the throughput
measurements are scattered over a wide range (i.e.,
max and min are far apart and median is far apart
from both).

4. Mostly high but occasionally low cross-traffic: a
majority of throughput measurements are clustered
around the minimum but a few measurements are
farther away (i.e., max and min are far apart but
median is close to min).

Our categorization of the level of cross-traffic in each
case is based on two key observations about the nature
and impact of cross-traffic. First, cross-traffic only low-
ers throughput and never improves it. Thus, when a
majority of throughput measurements are close to min
but far apart from max (as in category 4 above), it is
more likely that the noise-free throughput is closer to
max than min.
Second, cross-traffic is unlikely to be consistently

high over a long period of time. In theory, measurements
in category 1 above could be explained by consistently

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0% 20% 40% 60% 80% 100%

C
D

F

Noise

Upstream
Downstream

Figure 5: Noise observed in our 3,705 sample dataset.
85.2% of upstream flows and 75.7% of downstream
flows have less than 20% of noise. Noise is measured as
the difference between maximum and median through-
put calculated as a percentage of maximum throughput.

high cross-traffic. But, this would require the cross-
traffic to remain high and consistent (without changing)
over the duration of the entire experiment, which is ten
minutes. We believe that this is unlikely.

For robust detection of differentiation, we discard all
tests where a majority of flows are affected by high noise
(i.e., categories 3 and 4). For these tests, we cannot de-
termine whether the difference in throughput is caused
by differentiation or transient noise. We analyze only
the remaining tests, for which a majority of runs experi-
ence low noise (i.e., categories 1 and 2).

To help determine which tests belong to the predom-
inantly low noise category, we plot the difference be-
tween maximum and median throughput as a percentage
of maximum throughput in Figure 5. We found that for
a large majority of tests (85.2% of upstream tests and
75.7% of downstream tests) the median throughput is
within 20% of the maximum. The difference between
median and maximum throughput is considerably larger
for the remaining flows. We thus use the 20% difference
between median and max throughputs as a threshold
to discard tests that are significantly affected by noise.
Next, we describe how we detect traffic differentiation
within the remaining tests.

5.2 Detecting differentiation in low-noise
tests

To detect traffic differentiation among tests that are iden-
tified as low noise, we compare the maximum througput
of each flow type. Our decision to use the maximum
is based on the observations that (a) in low-noise cases,
most measurements lie close to the maximum through-
put and (b) because noise tends to lower throughput, the
maximum throughput is a good approximation for what
the flows would achieve without cross-traffic.

We infer that the two flow types are being treated dif-
ferently if the maximum throughput of one differs from

0%

2%

4%

6%

8%

10%

0% 10% 20% 30% 40% 50% 60%

P
e
rc

e
n
ta

g
e
 o

f
flo

w
s

d
e
te

ct
e
d
 a

s
d
iff

e
re

n
tia

te
d

Throughput difference threshold

Figure 6: Selecting a good throughput difference
threshold. Thresholds smaller than 20% tend to pro-
duce a significant number of false positives.

that of the other by more than a threshold δ. Selecting a
good δ involves a trade-off. With high values, we can-
not detect differentiation unless the impact on through-
put is high. For instance, with δ=50%, we would only
detection differentiation that halves the flow throughput.
Thus, high values raise the false negative rate. On the
other hand, with low values of δ (say 5%), we risk false
positives, i.e., declaring that ISPs are employing traffic
differentiation while they actually do not.

To understand how the false positive rate varies with
δ, we selected 302 test runs from users from ISPs that
we know do not differentiate. Figure 6 plots the per-
centage of tests that are falsely marked as being differ-
entiated for different threshold values. The plot shows
an interesting trend; the false positive rate drops steeply
until δ reaches 20%. Beyond this threshold, there are a
handful of hosts (0.58%) that pass our noise tests but are
still falsely marked as differentiated. To avoid any false
positives, we would need to raise the threshold to 40%,
which increases the false negative rate.

We thus set δ to 20%. With this value we maintain a
low false positive rate (under 0.6%), but we fail to detect
differentiation that reduces a flow’s throughput by less
than 20%. We consider this an acceptable trade-off.

5.3 User impatience with long tests

As described above, we configured Glasnost to run a
pair of one-minute-long flows five times, resulting in a
total test time of 10 minutes. The tests we originally
deployed also detected whether the differentiation was
based on port number or payload, extending the test du-
ration to 20 minutes. While this test configuration en-
ables us to detect differentiation with high confidence,
we noticed that a considerable fraction of users were
aborting the tests before completion.

Figure 7 shows how long users keep their Glasnost
test running. The plot for 20 minute long tests shows an
alarming decline in the percentage of users as the test
progresses. Only 40% of the users stay till the end and

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

C
C

D
F

Test run time per user (seconds)

 6 min Glasnost test
20 min Glasnost test

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

C
C

D
F

Test run time per user (seconds)

Minimum run-
time 6 min test

Minimum run-
time 20 min test

Figure 7: Duration users run the Glasnost test.
Longer duration tests are aborted by a larger fraction of
users.

nearly 50% aborted their tests within the first 10 min-
utes. The sudden drop near the 20 minute point corre-
sponds to successfully completed tests.

Our results show that users are impatient. Most are
not willing to use tests that take more than a few min-
utes. To confirm this, we reconfigured Glasnost to use
shorter-duration tests. We reduced the number of times
we repeat each flow type to two (from five), and we de-
creased the duration of each flow to 20 seconds (from 60
seconds), which is still sufficient for TCP to exit slow-
start and achieve stable throughput. We bundled the tests
for both upstream and downstream directions, and the
resulting test takes 5.33 or roughly 6 minutes.

Figure 7 shows also how long users keep the 6 minute
Glasnost test running. More than 80% of the users stay
till the end, confirming that shorter tests on the order of
a few minutes are more effective at retaining users.

5.4 Detecting differentiation with short
tests

Short duration tests are challenging for detecting differ-
entiation robustly because they gather few measurement
samples. To estimate the impact of this reduction in data
on detection accuracy, we consider data from the longer
tests for which we have a result, i.e., for which we know
whether or not the ISP is differentiating. We prune the
data to include only what would be gathered by the short
test and run our analysis on the pruned data. We com-
pare the results from this shorter test data with those ob-
tained before.

We find that nearly 25% of the long tests that we were
able to successfully analyze before, were discarded as
too noisy after pruning. We find the false positive rate
(i.e., cases when the long test found no traffic differen-
tiation but the short test did) to be 2.8% and the false
negative rate (i.e., cases when the long test found traffic
differentiation but the short test did not) to be 0.9%.

We also find that we can achieve a four-fold reduc-
tion in false positive rate, to 0.7% (which is comparable

to the false positive rate of long tests), by raising the δ
threshold from 20% to 50%. While this increases the
false negative rate to 1.7%, we consider it an acceptable
trade-off.

6 Facilitating New Test Construction

Manually implementing Glasnost tests for a new appli-
cation is a laborious and error prone task. It requires
detailed knowledge of the application’s protocols and
their common implementations. This creates a high bar-
rier for new test construction, making it difficult to keep
pace with the evolution of ISPs’ policies.

In this section, we present a tool called
trace-emulate that simplifies the construction
of new tests by automating most of the process. We
also present a validation of the tests constructed by
trace-emulate using the open source DPI engine
of a commercial traffic shaper [22].

Our trace-emulate tool automatically generates
a new Glasnost test from the packet-level trace of an
application. It extracts the essential characteristics of
the application flows. These include packet sizes and
payloads as well as the order of packets with protocol
messages and the inter-packet timing.

The test configuration that trace-emulate out-
puts is then used by the Glasnost Java applet to run the
test. When run against the server, the applet exchanges
two flows. The first flow has the same characteristics
as the original trace. For example, assume that in the
original trace the client performed the following opera-
tions: (1) sent packet A, (2) received packet B, (3) sent
packet C after t seconds. These operations occur in the
same order and relative times in the generate flow. In
some cases, simultaneously preserving packet ordering
and inter-packet timing is impossible. Such cases arise
when an endpoint is waiting to receive a packet that gets
delayed in the network. We make the endpoint (client
or the server) wait until the packet is received before
continuing the emulation, even though it increases the
inter-packet time. Our decision to preserve ordering at
the expense of timing is motivated by the observation
that ISPs often use the sequence of protocol messages
to identify applications, rather than their relative timing.
The second flow exchanged by the applet is a reference
flowwith the same characteristics but uses different pay-
loads and ports. The user uploading the trace can set
the ports to specific values, e.g., the application’s default
port; otherwise, random ports are used.

Our experiments confirm that the replaying method
of trace-emulate produces the same packet sizes,
payloads, and ordering as the original trace. We omit
detailed results.

Validating tests generated by trace-emulate. We vali-
date that trace-emulate captures the essential char-
acteristics that an ISP might use to identify an applica-
tion flow in practice. While ISPs can, in theory, use ar-
bitrarily complex mechanisms, in practice they are lim-
ited to using mechanisms that can scale to at least mul-
tiple Gbps. We are therefore interested in validating
trace-emulate against practical detection mecha-
nisms used by ISPs.

As one might imagine, ISPs use traffic classification
solutions from third-party vendors such as Sandvine,
BlueCoat, and Arbor Networks; most ISPs do not build
their own system. Fortunately, pressure from privacy
watchdogs compelled one of these vendors – Ipoque –
to release the code it uses to inspect user traffic [22].
This release gives the research community, for the first
time, access to production code that ISPs use to detect
the application that a user is running.

The Ipoque code allows us to realistically validate
trace-emulate. By inspecting the code we dis-
cover what applications are detected. We run the ap-
plication and check whether the Ipoque detector de-
tects the application from the packet flow. We then use
trace-emulate to generate a Glasnost test for that
application. We run the test and check whether the re-
sult is the same. If Ipoque detects our emulated flow
as the target application, then we have successfully cap-
tured the essential characteristics that are necessary for
detection by a commercial traffic classifier.

Ipoque’s detector can identify traffic from more than
90 widely-used applications broadly classified as peer-
to-peer, video streaming, instant messaging, online
gaming, and other applications (email, web, etc.). It
took us less than two hours to generate Glasnost tests
for 10 representative applications in all five of the above
categories. This included eMule, Gnutella, and BitTor-
rent (all P2P); YouTube (streaming video); World of
Warcraft (online game); IRC (instant messaging); and
HTTP, FTP and IMAP. For eMule and Gnutella, Ipoque
separately identifies their control and data connections;
consequently, we used trace-emulate to generate
the corresponding two tests. That we were able to gen-
erate all tests in a matter of hours is a testament to the
simplicity of trace-emulate.

In every single case, Ipoque identified the test gen-
erated by trace-emulate as the target application.
To the extent Ipoque is representative of other similar
vendors, we can claim that trace-emulate captures
the essential flow characteristics for applications that do
not encrypt traffic. However, without knowledge of how
Ipoque detects applications from encrypted traffic, we
cannot make any claims in that regard.

To convince ourselves that the Ipoque result holds in
the real-world, we further validated trace-emulate

Application Port-based Content-based

BitTorrent 6881, down down

eMule data 4662, down down

Gnutella control 6346, down+up down+up

Gnutella data 6346, down+up down

HTTP no no

IMAP no no

SSH no no

Table 1: Results from running new Glasnost tests on
a host connected via Kabel Deutschland. We iden-
tified instances of port-based and content-based traf-
fic differentiation both the downstream (down) and up-
stream (up) directions.

against Kabel Deutschland, the biggest cable ISP in Ger-
many. Kabel Deutschland targets P2P filesharing ap-
plications between 6pm and midnight [12]; their cho-
sen vendor for traffic shaping equipment is unknown.
In any event, since we know their policy, validating
trace-emulate is straightforward. We run tests
we generated for BitTorrent, eMule, Gnutella, HTTP,
IMAP, and SSH from a Kabel Deutschland user, and
check if Glasnost detects traffic differentiation.

Glasnost detected traffic differentiation for each of
the P2P applications, and none of the non-P2P appli-
cations. In fact, by running the tests in both directions
(downstream and upstream) and using different ports
(default application port, random port), we were able to
refine the policy published by Kabel Deutschland. Ta-
ble 1 shows that P2P traffic is differentiated regardless
of the port number used (i.e., based on the packet con-
tent). Next, we ran the HTTP, IMAP, and SSH tests on
the ports typically used by the three P2P applications
and found the flows achieved significant lower through-
put. Running the same tests on random ports resulted in
normal throughput. This is precisely what one might ex-
pect if Kabel Deutschland additionally uses port-based
detection, which naturally has false-positives. Regard-
less of whether Kabel Deutschland sought to omit men-
tion of side effects of their differentiation policy or we
have identified a misconfiguration, our finding demon-
strates the value of network transparency tools such as
Glasnost.

7 Deployment Experiences

We deployed Glasnost publicly on the Internet on
March 18th, 2008 and it has been operational ever
since. It can be accessed at http://broadband.mpi-

sws.org/transparency/glasnost.php. Initially, Glasnost
was deployed on eight servers at MPI-SWS. Over the
last year, the number of servers has grown to eighteen
with the use of Measurement Lab (M-Lab) [16], an open

platform for the deployment of Internet measurement
tools to enhance network transparency. Eleven servers
are in Europe, three on the west coast of the USA, and
four on the east coast of the USA.
In the beginning, we chose to focus on one application

as we developed our system and refined its techniques.
We picked BitTorrent because it is widely suspected of
being manipulated by ISPs [15]. However, our differ-
entiation detection techniques are not specific to BitTor-
rent and can be applied to other applications as well.
Because we have only recently deployed tests for other
applications, an overwhelming majority of our data is
from BitTorrent. We thus limit most of the discussion
below to BitTorrent.

Details of deployed tests. In this paper, we present
results for four BitTorrent tests deployed on Glasnost.
These tests detect port- and content-based differentia-
tion in the upstream as well as the downstream direction.
Each test involves emulating BitTorrent and reference
flows. For detecting content-based differentiation, we
replace BitTorrent packet payloads with random bytes
in the reference flows, while keeping other aspects iden-
tical. For detecting port-based differentiation, only the
port of the reference flow is switched from a well-known
BitTorrent port (e.g., 6881) to a neutral port that is not
associated with any particular application (e.g., 10009).
We emulate flows in both upstream and downstream di-
rections to check for manipulation of both BitTorrent
uploads and downloads. As described in Section 5, we
configuredGlasnost to offer a 6-minute long test to users
with each flow running for 20 seconds. Also, each flow
type is repeated once.

Usage. Between March 18th, 2008 and September 21st,
2009, 368,815 users2 from 5,846 ISPs used Glasnost to
test for traffic differentiation. We believe that our large
user base is a result of our focus on lowering the barrier
of use such that even lay users can use our system.
Figure 8 shows that our users have a wide geo-

graphical footprint. They come from North Amer-
ica (38%), Europe (36%), South America (11%), Asia
(12%), Oceania (3%), and Africa (<1%).
Table 2 lists the top 20 access ISPs to which our users

belonged. Users’ IP addresses are mapped to ISPs us-
ing whois information from the Regional Internet Reg-
istries. We see that a large fraction of our users are from
some of the largest residential ISPs in their respective
countries, such as Comcast in the USA, Bell Canada in
Canada, or BT in the UK.

2In this section, we use the terms tests, IP addresses, and users in-
terchangeably. There are very few IP addresses from which we saw
repeat tests and a vast majority of tests correspond to an unique IP
address. The same end user may be associated with different IP ad-
dresses during the course of our study. By overlooking this, we may
be over-counting the number of unique end users.

Figure 8: Location of Glasnost users.

ISP Tests ISP Tests

Comcast (US) 29,464 BT (UK) 5,192

RoadRunner (US) 16,257 Chunghwa T. (TW) 5,084

AT&T (US) 10,884 Shaw (CA) 4,933

UPC (NL) 8,871 Brasil Telec. (BR) 4,862

Verizon (US) 7,611 Rogers (CA) 4,499

Cox (US) 4,194 Telefonica (BR) 4,408

Net Virtua (BR) 7,207 Telefonica (ES) 4,229

Telecom Italia (IT) 6,955 NTL (UK) 3,852

Charter (US) 3,634 Vivo (BR) 3,723

Bell Canada (CA) 5,233 GVT (BR) 3,723

Table 2: Top 20 ISPs based on the number of Glas-
nost tests conducted by their users.

7.1 Characterizing BitTorrent Differenti-
ation

We now use the data collected during our deployment
to characterize BitTorrent differentiation in the Internet.
To our knowledge, such detailed characterization was
not available before.

Figure 9 shows the percentage of users for whom
we detected differentiation in at least one of the four
tests that we widely deployed on Glasnost. Aside from
a few weeks in the beginning when we did not have
enough users, this percentage has stayed roughly con-
stant around 10%. Thus, a non-negligible fraction of our
testers are subject to differentiation.

We do not, however, claim that 10% of all Internet
users experience differentiation. Glasnost users are self-
selecting, and our data may be biased towards users that
suspect their ISP to be differentiating against BitTorrent.

7.2 Understanding ISP behaviors

Our Glasnost deployment was so popular that we had
hundreds of users from some of the largest ISPs world-
wide. Aggregating results from all the users belonging
to an ISP can provide an understanding of the extent
to which the ISP differentiates traffic. Such ISP-wide
perspectives are especially useful for policy makers and
government regulators responsible for monitoring ISP
behavior. Further, end users can compare the state of

0%

20%

40%

60%

80%

100%

Apr’08

M
ay

Jun
Jul

Aug
Sep

O
ct

N
ov

D
ec

Jan’09

Feb
M

ar
Apr

M
ay

Jun
Jul

Aug

U
se

rs
 w

ith
 d

iff
e
re

n
tia

tio
n

Figure 9: Percentage of tests in which we detected
differentiation since March 2008.

differentiation across different ISPs to make a more in-
formed choice when selecting their ISP.

We now turn our attention to understanding the poli-
cies of individual access ISPs. For this analysis, we
map users to their access ISPs (using whois) and assume
that the access ISP is responsible for any observed dif-
ferentiation. While it is possible that the responsibility
lies with a transit ISP along the path, differentiation is a
more common practice amongst access ISPs [1, 5].

We limit the analysis in this section to the tests con-
ducted in the two-month period that covers January and
February 2009 because the differentiation behavior of
an ISP can change over time. We select the two-month
period for which we have the most data. Further, we
consider only ISPs for which we have at least 100 tests
in this time period. There are 140 such ISPs.

7.2.1 Basis for differentiation

Table 3 shows the list of the top-30 ISPs ranked based
on the fraction of hosts that detected differentiation. Ta-
ble 3 also shows how traffic is differentiated. More than
half the ISPs differentiate only in the upstream direction
and 7 ISPs only in the downstream direction. 20% of
ISPs (e.g., Clearwire, TVCABO) differentiate in both
directions. We also find that most differentiating ISPs
use both content- and port-based differentiation. For
only four ISPs (Free, GVT, Pipex, and Tiscali UK) do
we observe an exclusive use of port-based differentia-
tion (which is easier to evade). And only one ISP, Oi,
uses content-based differentiation exclusively.

Our results show that Glasnost can shed light on how
ISPs identify the traffic they differentiate.

7.2.2 Fraction of users impacted

ISPs that differentiate against BitTorrent traffic do not
do so for every user. For each ISP in Table 3, Figure 10
shows the fraction of users that tested positive for dif-
ferentiation. We see that in the median case only 21%
of users are affected. Given our tests’ low false posi-

ISP Loc.
Upstream Downstream

app port app port

Bell Canada (D) CA × ×

Brasil Telecom (D) BR × ×

BT (D) UK × ×

Cablecom (C) CH × ×

Canaca (D) CA × ×

City Telecom (F) HK × × × ×

Clearwire (W) US × × × ×

Cogeco (C) CA × ×

EastLink (C) CA × ×

Free (D) FR ×

GVT (D,F) BR ×

Kabel Deutschland (C) DE × × × ×

Magix (D) SG × ×

Oi (D) BR ×

ONO (C) ES × ×

ISP Loc.
Upstream Downstream

app port app port

PCCW (D) HK × × × ×

Pipex (D) UK ×

Rogers (C) CA × ×

Shaw (C) CA × ×

TekSavvy (D) CA × ×

Tele2 (D) IT × ×

Telenet (D) BE × ×

TFN (D) TW × ×

Tiscali Italia (D) IT × ×

Tiscali UK (D) UK ×

TM Net (D) MY × ×

TVCABO (C) PT × × × ×

UPC NL (C) NL × ×

UPC Poland (C) PL × ×

UPC Romania (C) RO × ×

Table 3: Top 30 ISPs based on the fraction of users that are affected by traffic differentiation during January
and February 2009. The table shows if the flows are differentiated based on application content (app), TCP ports, or
both. The letter in parenthesis gives the type of access network the ISP runs, i.e., DSL (D), Cable (C), Fiber-To-The-
Home (F), and WiMax (W).

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 20% 40% 60% 80% 100%

F
ra

ct
io

n
 o

f
d
iff

e
re

n
tia

tin
g
 I
S

P
s

Percentage of users affected by differentiation per ISP

Figure 10: Typically, we detected traffic differentia-
tion for only a fraction of an ISP’s users.

tive and negative rates, this inconsistent impact within
an ISP cannot be explained by inference errors alone.

Our data does not allow us to infer why only a frac-
tion of users of an ISP experience traffic differentiation.
There are many possible reasons. An ISP might choose
to target only customers who generate a lot of P2P traf-
fic, the traffic shapers might be deployed in only a por-
tion of the ISP network, or an ISP might differentiate
only during peak hours or periods of high load.

7.2.3 Dependence on time of day

One potential explanation for why only some users ex-
perience differentiation is that ISPs may differentiate
only during peak hours, when the network is experienc-
ing the greatest load. To investigate the dependence on
time of day we divided our dataset into two time periods
based on the local time of the user3. The peak period

3We used an IP-to-geolocation tool to infer the timezone of each user.

is 8pm–12am, and the off-peak period is 5–9am. These
periods are strict subsets of the peak and off-peak dura-
tions for access ISPs [5, 14].

For each period we infer if an ISP differentiated traf-
fic. Our analysis excludes ISPs that have fewer 100mea-
surements for either of the two time periods. This leaves
us with 30 ISPs. We find that slightly more than half
of these ISPs to differentiate during both peak and off-
peak hours. The other ISPs, e.g., BT, Bell Canada, Ka-
bel Deutschland, ONO, and Tiscali UK, restrict traffic
differentiation to the peak period.

Our results in the last two sections show the impor-
tance of enabling end users to detect differentiation for
themselves and at particular points in time. Many exist-
ing tools attempt to discover whether or not a ISP dif-
ferentiates traffic [27, 30]. Since not all users of an ISP
are affected by differentiation all the time, ISP-wide in-
formation alone is not sufficient for a user to determine
if she experiences differentiation.

7.3 User feedback

Since our system became operational, we have received
more than one hundred e-mails from users. The feed-
back is overwhelmingly positive, and it reveals two
pieces of information. First, we find evidence of false
negatives in our results. Around 6% of our emailers
were skeptical when Glasnost did not discover traffic
differentiation. They were convinced that their ISP dif-
ferentiates, sometimes based on information their ISP
publishes. If these users are right, their cases con-

firm that our decision to minimize the false positive rate
comes at the cost of false negatives. While we continue
to investigate ways to reduce the false negative rate, we
are pleased to report that no user has complained about
the presence of a false positive.

Second, some emails requested Glasnost tests for
other P2P applications such as eMule as well as non-P2P
applications such as FTP, SSH, and HTTP. The constant
stream of such requests motivated us to open the Glas-
nost platform and allow users to contribute new Glas-
nost tests. We describe this extension in the following
section.

7.4 User-contributed Glasnost tests

It is not feasible for us to create Glasnost tests for each
of the large number of applications and possible traf-
fic differentiation policies that are of interest to users.
Hence, we decided to allow users to create their own
Glasnost tests using the trace-emulate tool that we
described earlier. To create a new test, users need to
capture a packet trace of their target application using
tcpdump and then use trace-emulate to create a
new Glasnost test from the trace. These new tests can be
uploaded to our measurement servers using the Glasnost
webpage. Our interface for creating new tests is targeted
not at lay users, but at advanced users who have some
familiarity with capturing network traces.

We have deployed this interface only recently, and we
do not yet have a lot of experience with it. However,
we asked a handful of our colleagues, who are doctoral
students not associated with our project, to use the in-
terface to create new Glasnost tests: they were able to
create new tests quite easily.

8 Related Work

This section describes Glasnost in the context of exist-
ing work on traffic differentiation, trace replay, andmea-
surement systems.

Traffic Differentiation. Three early studies investi-
gated the prevalence of blocking for BitTorrent [10, 11]
or for general traffic based on port numbers [4]. They
found blocking to be relatively common. Our results
show that gentler forms of differentiation are now much
more prevalent than outright blocking.

Three recent efforts proposed techniques for detecting
traffic differentiation. NetPolice [31] (previously named
NVLens [30]) compares the aggregate loss rates of dif-
ferent flows to infer the presence of “network neutrality
violations” in backbone ISPs. In contrast, Glasnost fo-
cuses on enabling individuals to detect whether they are
subject to traffic differentiation.

NANO [27] uses causal inference to infer the pres-
ence of traffic performance degradation. NANO re-
lies on a vast amount of passively collected traces from
many users to infer if traversing a particular ISP leads to
poorer performance for certain kinds of traffic. In con-
trast, Glasnost uses active measurements and a simple
head-to-head comparison of two flows to quickly inform
users whether they face traffic differentiation—without
relying on other users. However, adding passive mea-
surement techniques to Glasnost might enable it to de-
tect time- or usage-dependent traffic differentiation.
DiffProbe [13] detects whether traffic differentiation

based on active queue management (AQM), such as
RED and weighted fair queueing, is deployed in the
network path. DiffProbe complements Glasnost as it
can detect differentiation that leads to small increase in
latency and can identify the AQM technique used. If
AQM affects application throughput, Glasnost can also
detect this.
Trace replay. Monkey [6] is a TCP replay tool that
takes a packet-level trace as input and generates a new
trace with similar network-level properties, such as la-
tency and bandwidth. More recent work [8] investi-
gates ways to infer higher-level protocols from low-level
packet traces. Our trace-emulate tool is an adap-
tation of such methods.
Measurement systems. Many researchers use net-
work testbeds, such as PlanetLab [24], RON [3], and
NIMI [23], to conduct measurement studies. Unlike
Glasnost, these testbeds are designed explicitly for use
by researchers. There are a number of tools deployed on
M-Lab [16] with the goal of enhancing Internet trans-
parency. Most of them are generic measurement tools
that characterize certain features of the Internet
The DIMES project [9] is based on the SETI@home

model. It uses volunteer-contributed hosts to run
traceroute measurements that are used to map
the connectivity of edge networks. The two systems,
DIMES and Glasnost, offer an interesting (if unfair due
to different goals) comparison of user models. DIMES
relies on the ability to run arbitrary code on users’ com-
puters. It was deployed over four years ago and has
about 8,000 users.
Finally, Netalyzr [17] is a web-based measurement

tool that mostly focuses on the detection of network-
ing problems. Like Glasnost, it targets lay users with an
easy-to-use interface and allows them to detect, for in-
stance, manipulation of web content by a HTTP proxy in
the path or blocking of traffic on some prominent ports.

9 Conclusion

We described Glasnost, a system that we deployed more
than a year ago to let ordinary users detect traffic dif-

ferentiation along their paths. More than 350,000 users
from over 5,800 ISPs worldwide have used it to detect
BitTorrent differentiation. We believe that our focus on
making it easy for lay users to use the system and to
understand its results have led to its success. Using the
data gathered by Glasnost, we also presented what to our
knowledge is the first detailed analysis of BitTorrent dif-
ferentiation practices in the Internet. The data collected
by Glasnost is available through M-Lab [16].

Over the past year, we have encountered many re-
searchers who were skeptical about the benefits of mea-
suring traffic differentiation. Even some of this paper’s
authors were initially skeptical. A common argument is
that, since traffic differentiation is attracting so much at-
tention from industry and the government, the permissi-
ble practices would soon be standardized and apparent.
The skeptics might or might not be right. But the pop-
ularity of Glasnost and the positive feedback shows that
many users are curious about the behavior of their Inter-
net paths. Indeed, Glasnost’s impact goes beyond traffic
differentiation in our view. Its design shows one effec-
tive way to build and deploy a measurement system that
satisfies such curiosities and makes the network more
transparent to its users.

10 Acknowledgments

We thank Andreas Haeberlen and Alan Mislove for their
contributions during the early stages of the Glasnost
project. We also thank our shepherd Nick Feamster, and
the anonymous reviewers for detailed feedback on this
paper. Finally, we thank the people and the organiza-
tions supporting the M-Lab platform for hosting Glas-
nost on M-Lab servers.

References

[1] Comments of Comcast Corporation before the FCC. http://
fjallfoss.fcc.gov/prod/ecfs/retrieve.cgi?

native_or_pdf=pdf&id_document=6519840991.

[2] The Global Broadband Speed Test. http://www.

speedtest.net.

[3] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Re-
silient Overlay Networks. In Proc. of SOSP, 2001.

[4] R. Beverly, S. Bauer, and A. Berger. The Internet’s Not a Big
Truck: Toward Quantifying Network Neutrality. In Proc. of the
Passive and Active Measurement Conference (PAM), 2007.

[5] Canadian Radio-television and Telecommunications Commis-
sion. Review of the Internet traffic management practices of In-
ternet service providers. http://crtc.gc.ca/PartVII/
eng/2008/8646/c12_200815400.htm.

[6] Y.-C. Cheng, U. Hoelzle, N. Cardwell, S. Savage, and G. M.
Voelker. Monkey See, Monkey Do: A Tool for TCP Tracing and
Replaying. In Proc. of the USENIX Technical Conference, 2004.

[7] Comcast: Description of planned network management
practices. http://downloads.comcast.net/docs/

Attachment_B_Future_Practices.pdf.

[8] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz.
Tupni: automatic reverse engineering of input formats. In Proc.
of CCS, 2008.

[9] The DIMES Project. http://www.netdimes.org/.

[10] M. Dischinger, A. Mislove, A. Haeberlen, and K. P. Gummadi.
Detecting BitTorrent Blocking. In Proc. of IMC, 2008.

[11] EFF. “Test Your ISP” Project. http://www.eff.org/

testyourisp.

[12] J. Röttgers, Focus Online, 6.03.2008. Internetanbieter bremst
Tauschbörsen aus. http://www.focus.de/digital/

internet/kabel-deutschland_aid_264070.html.

[13] P. Kanuparthy and C. Dovrolis. DiffProbe: Detecting ISP Ser-
vice Discrimination. In Proc. of INFOCOM, 2010.

[14] N. Laoutaris and P. Rodriguez. Good Things Come to Those
Who (Can) Wait – or how to handle Delay Tolerant traffic and
make peace on the Internet. In Proc. of HotNets, 2008.

[15] List of ISPs suspected to traffic shape BitTorrent. http://

www.azureuswiki.com/index.php/Bad_ISPs.

[16] Measurement Lab. http://www.measurementlab.net.

[17] The ICSI Netalyzr. http://netalyzr.icsi.

berkeley.edu.

[18] New York Times. ’Neutrality’ Is New Challenge for Internet
Pioneer, September 2006. http://nytimes. com/2006/
09/27/technology/circuits/27neut.html.

[19] New York Times. Comcast: We’re Delaying, Not Block-
ing, BitTorrent Traffic, October 2007. http://bits.

blogs.nytimes.com/2007/10/22/comcast-were-

delaying-not-blocking-bittorrent-traffic.

[20] New York Times. F.T.C. Urges Caution on Net Neutrality,
June 2007. http://www.nytimes.com/2007/06/28/

technology/28net.html.

[21] New York Times. F.C.C. Chairman Favors Penalty on Com-
cast, July 2008. http://www.nytimes.com/2008/07/
11/technology/11fcc.html.

[22] OpenDPI. http://www.opendpi.org.

[23] V. Paxson, A. K. Adams, and M. Mathis. Experiences with
NIMI. In Proc. of the SAINT Workshop, 2002.

[24] PlanetLab. http://www.planet-lab.org/.

[25] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A Public
Internet Measurement Facility. In Proc. of USITS, 2003.

[26] Systems Research Lab, University of Colorado at
Boulder. Broadband network management. http:

//systems.cs.colorado.edu/mediawiki/index.

php/Broadband_Network_Management.

[27] M. B. Tariq, M. Motiwala, N. Feamster, and M. Ammar. De-
tecting Network Neutrality Violations with Causal Inference. In
Proc. of the CoNEXT Conference, 2009.

[28] VELOCIX: New Generation Content Delivery Network. http:
//www.velocix.com.

[29] Vuze Network Status Monitor. http://azureus.sf.net/
plugin_details.php?plugin=aznetmon.

[30] Y. Zhang, Z. M. Mao, and M. Zhang. Ascertaining the Reality
of Network Neutrality Violation in Backbone ISPs. In Proc. of
ACM HotNets-VII Workshop, 2008.

[31] Y. Zhang, Z. M. Mao, and M. Zhang. Detecting Traffic Differen-
tiation in Backbone ISPs with NetPolice. In Proc. of the Internet
Measurement Conference (IMC), 2009.

